Comparison of UAV Drone and Online Terrain Model for Railway Route Planning
DOI:
https://doi.org/10.37367/jrtt.v1i1.6Abstract
This research tried to compare Digital Elevation Model (DEM) results from UAV Drone Survey with online DEM with a study case a railway route planning from Semarang to Demak in Central Jawa. The terrain model was resulted by Agisoft Metashape software and was compared to DEM from GoogleEarth, BING, SRTM, ASTERGDEM and DEMNAS by using Global Mapper sofware. The comparison was conducted by generating contour drawing for each model, along with graphical and statistical analysis. The results shown that the DEM Model from UAV Drone Survey result can meet the standard accurcy needed. The result of comparison from other the online DEM resulted that DEMNAS and ASTER GDEM have the stronges correlation among other DEM resources. The finding suggested for a carefull consideration to use open source DEM Data for perelyminary design odr Detail Engineering Design, especially for railway infrastructure project.
References
S. Mukherjee, P. K. Joshi, S. Mukherjee, A. Ghosh, R. D. Garg, and A. Mukhopadhyay, “Evaluation of vertical accuracy of open source Digital Elevation Model (DEM),” Int. J. Appl. Earth Obs. Geoinf., vol. 21, no. 1, pp. 205–217, 2012, doi: 10.1016/j.jag.2012.09.004.
K. L. A. El-Ashmawy, “Investigation of the Accuracy of Google Earth Elevation Data,” Artif. Satell., vol. 51, no. 3, pp. 89–97, 2016, doi: 10.1515/arsa-2016-0008.
M. Faisal, A. Rani, and N. Rusli, “The Accuracy Assessment of Agisoft PhotoScan and Pix4D Mapper Software in Orthophoto Production,” Geomatics Res. Innov. Compet. Gric, vol. 1, no. August, pp. 1–5, 2017.
K. Khasanov and A. Ahmedov, “Comparison of Digital Elevation Models for the designing water reservoirs: A case study Pskom water reservoir,” E3S Web Conf., vol. 264, 2021, doi: 10.1051/e3sconf/202126403058.
V. T. Tran, H. H. Nguyen, T. L. Chu, and L. T. Mai, “BIM application for the design consultant on the irriga- tion and hydropower projects in Vietnam,” pp. 1205–1206, 2020.
D. Turner, A. Lucieer, and C. Watson, “An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SFM) point clouds,” Remote Sens., vol. 4, no. 5, pp. 1392–1410, 2012, doi: 10.3390/rs4051392.
H. Yao, R. Qin, and X. Chen, “Unmanned aerial vehicle for remote sensing applications - A review,” Remote Sens., vol. 11, no. 12, pp. 1–22, 2019, doi: 10.3390/rs11121443.
H. M. R. Manatunga, U. I., Munasinghe, N., & Premasiri, “Development of a Methodology to Map Railway Lines and Surrounding Land Use using UAVs,” no. September, 2017.
P. Lesiak, “Inspection and Maintenance of Railway Infrastructure with the Use of Unmanned Aerial Vehicles,” Probl. Kolejnictwa - Railw. Reports, vol. 64, no. 188, pp. 115–127, 2020, doi: 10.36137/1883e.
D. A. Leonid Nadolinets, Eugene Levin, Surveying Instruments and Technology. CRC Press, 2017.
A. F. Tarmizi, “Uji Akurasi Ketelitian Peta Orthofoto Menggunakan Pesawat UAV untuk Tata Guna Lahan (Studi Kasus: Kec. Purworejo, Kab. Purworejo),” ITN Malang, no. 1, 2019.
A. P. Susetyo, D. B., Perdana, “Uji Ketelitian Digital Surface Model ( DSM ) sebagai Data Dasar dalam Uji Ketelitian Digital Surface Model ( DSM ) sebagai Data Dasar dalam Pembentukan Kontur Peta Rupabumi Indonesia ( RBI ),” Semin. Penginderaan jauh 2015, vol. 1, no. October, pp. 299–306, 2015.
C. A. Rokhmana, “The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia,” Procedia Environ. Sci., vol. 24, pp. 245–253, 2015, doi: 10.1016/j.proenv.2015.03.032.
S. Moser, V., Barišić, I., Rajle, D., & Dimter, “Comparison of different survey methods data accuracy for road design and construction.,” 2016.
W. T. Adi, Y. Wiarco, R. Prihartanto, and A. Aghastya, “Sosialisasi Penerapan Penggunaan UAV Drone untuk Survey Pemetaan pada Bidang Jalur Perkeretaapian,” Madiun Spoor (JPM), vol. 1, no. 2, pp. 46–51, 2021, doi: 10.37367/jpm.v1i2.184.
J. Kim, S. Lee, J. Seo, D. E. Lee, and H. S. Choi, “The integration of earthwork design review and planning using uav-based point cloud and bim,” Appl. Sci., vol. 11, no. 8, pp. 1–14, 2021, doi: 10.3390/app11083435.
M. Akgul, H. Yurtseven, S. Gulci, and A. E. Akay, “Evaluation of UAV- and GNSS-Based DEMs for Earthwork Volume,” Arab. J. Sci. Eng., vol. 43, no. 4, pp. 1893–1909, 2018, doi: 10.1007/s13369-017-2811-9.
S. Il Cho, J. H. Lim, S. B. Lim, and H. C. Yun, “A study on dem-based automatic calculation of earthwork volume for BIM application,” J. Korean Soc. Surv. Geod. Photogramm. Cartogr., vol. 38, no. 2, pp. 131–140, 2020, doi: 10.7848/ksgpc.2020.38.2.131.
S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1–14, 2014, doi: 10.1016/j.autcon.2014.01.004.
Y. Taddia, F. Stecchi, and A. Pellegrinelli, “Coastal mapping using dji phantom 4 RTK in post-processing kinematic mode,” Drones, vol. 4, no. 2, pp. 1–19, 2020, doi: 10.3390/drones4020009.
J. Leo Stalin and RPC. Gnanaprakasam, “Volume Calculation from UAV based DEM,” Int. J. Eng. Res., vol. V6, no. 06, pp. 126–128, 2017, doi: 10.17577/ijertv6is060076.
Q. Zhou, “Digital Elevation Model and Digital Surface Model,” Int. Encycl. Geogr. People, Earth, Environ. Technol., no. March, pp. 1–17, 2017, doi: 10.1002/9781118786352.wbieg0768.
M. Rexer and C. Hirt, “Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database,” Aust. J. Earth Sci., vol. 61, no. 2, pp. 213–226, 2014, doi: 10.1080/08120099.2014.884983.
a P. Ozah and O. Kufoniyi, “Accuracy Assessment of Contour Interpolation From 1 : 50 , 000 Topographical Maps and Srtm Data for 1 : 25 , 000 Topographical Mapping,” Archives, pp. 1347–1354, 2006.
E. Rodríguez, C. S. Morris, and J. E. Belz, “A global assessment of the SRTM performance,” Photogramm. Eng. Remote Sensing, vol. 72, no. 3, pp. 249–260, 2006, doi: 10.14358/PERS.72.3.249.
W. T. Adi and A. Aghastya, “Penggunaan total station dan AutoCAD Civil 3D untuk perencanaan grading,” J. Perkeretaapi. Indones., vol. 1, no. 2, pp. 149–159, 2017.
C. Arango and C. A. Morales, “Comparison between multicopter UAV and total station for estimating stockpile volumes,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 40, no. 1W4, pp. 131–135, 2015, doi: 10.5194/isprsarchives-XL-1-W4-131-2015.
J. Cooke, “Terrain Modeling , Contouring and Analysis in AutoCAD Civil 3D”.
A. Julzarika and Harintaka, “Indonesian DEMNAS: DSM or DTM?,” AGERS 2019 - 2nd IEEE Asia-Pacific Conf. Geosci. Electron. Remote Sens. Technol. Underst. Forecast. Dyn. Land, Ocean Marit. Proceeding, pp. 31–36, 2019, doi: 10.1109/AGERS48446.2019.9034351.
S. Chen, Z. Tang, H. Zhou, and J. Cheng, “Extracting Topographic Data from Online Sources to Generate a Digital Elevation Model for Highway Preliminary Geometric Design,” J. Transp. Eng. Part A Syst., vol. 145, no. 4, p. 04019003, 2019, doi: 10.1061/jtepbs.0000212.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Wahyu Tamtomo Adi, Adya aghastya, Nanda Ahda Imron, Nurul Fitria Apriliani, Izza Anwer, Porntep Puangprakhon

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.