Autonomous Rail Rapid Transit (ART) Prototype Concept Using Wireless Charging System with Electromagnetic Induction Coupling

Authors

  • Sunardi sunardi Indonesian Railway Polytechnic
  • Reyvaldy Raffli Bachtiar Indonesian Railway Polytechnic
  • Alcha Duta Septione Indonesian Railway Polytechnic
  • Niken Ayu Larasati Indonesian Railway Polytechnic
  • Dimas Adi Perwira Indonesian Railway Polytechnic
  • Feddy Setio Pribadi Department of Electrical Engineering Universitas Negeri Semarang,
  • Muhammad Nurtanto Universitas Sultan Ageng Tirtayasa
  • Tamil Selvan Subramaniam Universiti Tun Hussein Onn Malaysia
  • Soedibyo Department of Electrical Engineering Institut Teknologi Sepuluh November

DOI:

https://doi.org/10.37367/jrtt.v1i1.4

Abstract

The development of charging technology in Autonomous Rapit Rail Transit (ART) vehicles uses a wireless power system by optimizing. The selection of the power transfer method uses an Inductive coupling of the LCCL model with a wide variation in the cross-section of the wire and the diameter of the fixed coil. Scenario testing by installing a power transfer system on ART facilities, testing is carried out on coil inductance, resonance coupling gap and power efficiency. Optimum power transfer is obtained on coils with a cross-sectional area of 1.5 mm / 6.13 μH and the highest power transfer efficiency of 40% at a distance of 0.5cm.

References

M. Saberi et al., “A simple contagion process describes spreading of traffic jams in urban networks,” Nat. Commun., vol. 11, no. 1, pp. 1–9, 2020, doi: 10.1038/s41467-020-15353-2.

M. R. Jabbarpour, H. Zarrabi, R. H. Khokhar, S. Shamshirband, and K.-K. R. Choo, “Applications of Computational Intelligence in Vehicle Traffic Congestion Problem: A Survey,” Soft Comput., vol. 22, no. 7, pp. 2299–2320, Apr. 2018.

S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver, “Autonomous vehicles: challenges, opportunities, and future implications for transportation policies,” J. Mod. Transp., vol. 24, no. 4, pp. 284–303, 2016, doi: 10.1007/s40534-016-0117-3.

S. He, F. Ding, C. Lu, and Y. Qi, “Impact of connected and autonomous vehicle dedicated lane on the freeway traffic efficiency,” Eur. Transp. Res. Rev., vol. 14, no. 1, 2022, doi: 10.1186/s12544-022-00535-4.

D. Han, J. Wang, Y. Yan, M. Wu, Z. Lin, and Y. Guodong, “Velocity planning of the autonomous rail rapid transit with consideration of obstacles,” 2020 4th CAA Int. Conf. Veh. Control Intell. CVCI 2020, no. Cvci, pp. 35–40, 2020, doi: 10.1109/CVCI51460.2020.9338562.

R. Huang, X. Yuan, Y. Hu, X. Zhang, X. Li, and X. Li, “Modeling and Simulation of All-Wheel Steered Multiple-Articulated Rubber-Tire Transit for Autonomous Driving Control,” in 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), 2019, pp. 1–6. doi: 10.1109/VPPC46532.2019.8952378.

X. Yang, X. Li, B. Ning, and T. Tang, “A survey on energy-efficient train operation for urban rail transit,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 1, pp. 2–13, 2016, doi: 10.1109/TITS.2015.2447507.

A. Sorniotti, P. Barber, and S. De Pinto, “Path Tracking for Automated Driving: A Tutorial on Control System Formulations and Ongoing Research BT - Automated Driving: Safer and More Efficient Future Driving,” D. Watzenig and M. Horn, Eds. Cham: Springer International Publishing, 2017, pp. 71–140. doi: 10.1007/978-3-319-31895-0_5.

N. Ghaviha, M. Bohlin, C. Holmberg, and E. Dahlquist, “Speed profile optimization of catenary-free electric trains with lithium-ion batteries,” J. Mod. Transp., vol. 27, no. 3, pp. 153–168, 2019, doi: 10.1007/s40534-018-0181-y.

R. Sedehi et al., “A Wireless Power Method for Deeply Implanted Biomedical Devices via Capacitively Coupled Conductive Power Transfer,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1870–1882, 2021, doi: 10.1109/TPEL.2020.3009048.

S. Khalid Rahman, “Design and Construction of Wireless Power Transfer System Using Magnetic Resonant Coupling,” Am. J. Electromagn. Appl., vol. 2, no. 2, p. 11, 2014, doi: 10.11648/j.ajea.20140202.11.

H. J. Lee, J. Y. Bang, and C. W. Chung, “Electromagnetically coupled resonators using toroidal ferrite core for wireless power transfer,” 2012 IEEE MTT-S Int. Microw. Work. Ser. Innov. Wirel. Power Transm. Technol. Syst. Appl. IMWS-IWPT 2012 - Proc., pp. 183–186, 2012, doi: 10.1109/IMWS.2012.6215782.

X. Gao et al., “Design and Analysis of a New Hybrid Wireless Power Transfer System with a Space-Saving Coupler Structure,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5069–5081, 2021, doi: 10.1109/TPEL.2020.3027473.

M. Rozman et al., “Smart Wireless Power Transmission System for Autonomous EV Charging,” IEEE Access, vol. 7, no. c, pp. 112240–112248, 2019, doi: 10.1109/ACCESS.2019.2912931.

Z. Li, S. Huang, M. Yang, and X. Yuan, “Transfer efficiency analysis of magnetic resonance wireless power transfer with multiple intermediate resonant coils,” Diangong Jishu Xuebao/Transactions China Electrotech. Soc., vol. 28, no. SUPPL.2, pp. 35–42, 2013.

Y. Park, J. Kim, and K.-H. Kim, “Magnetically Coupled Resonance Wireless Power Transfer (MR-WPT) with Multiple Self-Resonators,” Wirel. Power Transf. - Princ. Eng. Explor., 2012, doi: 10.5772/28387.

R. Zhang and C. K. Ho, “MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer,” IEEE Trans. Wirel. Commun., vol. 12, no. 5, pp. 1989–2001, 2013, doi: 10.1109/TWC.2013.031813.120224.

O. Obinna, O. Kennedy, O. Osemwegie, and N. Nsikan, “Comparative Analysis of Channel Estimation Techniques in SISO, MISO and MIMO Systems,” Int. J. Electron. Telecommun., vol. 63, no. 3, pp. 299–304, 2017, doi: 10.1515/eletel-2017-0040.

O. Okoyeigbo, K. Okokpujie, E. Noma-Osaghae, C. U. Ndujiuba, O. Shobayo, and A. Jeremiah, “Comparative Study of MIMO-OFDM Channel Estimation in Wireless Systems,” Int. Rev. Model. Simulations (IREMOS); Vol 11, No 3, 2018, [Online]. Available: https://www.praiseworthyprize.org/jsm/index.php?journal=iremos&amp

L. Chen, S. Liu, Y. C. Zhou, and T. J. Cui, “An optimizable circuit structure for high-efficiency wireless power transfer,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 339–349, 2013, doi: 10.1109/TIE.2011.2179275.

A. M. Jawad, R. Nordin, S. K. Gharghan, H. M. Jawad, and M. Ismail, “Opportunities and challenges for near-field wireless power transfer: A review,” Energies, vol. 10, no. 7, pp. 1–28, 2017, doi: 10.3390/en10071022.

J. Li, “Research progress of wireless power transmission technology and the related problems,” AIP Conf. Proc., vol. 1820, no. March 2017, pp. 1–5, 2017, doi: 10.1063/1.4977407.

S. D. Rankhamb and A. P. Mane, “Review Paper on Wireless Power Transmission for Energy Harvesting System,” Int. J. Sci. Res., vol. 5, no. 5, pp. 181–186, 2016, doi: 10.21275/v5i5.nov163268.

Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1801–1812, 2009, doi: 10.1109/TIE.2008.2010110.

S.-H. Lee and R. D. Lorenz, “Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap,” IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2495–2504, 2011, doi: 10.1109/TIA.2011.2168555.

J. Kim et al., “Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System,” Proc. IEEE, vol. 101, no. 6, pp. 1332–1342, 2013, doi: 10.1109/JPROC.2013.2247551.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, “Wireless power transfer via strongly coupled magnetic resonances,” Science (80-. )., vol. 317, no. 5834, pp. 83–86, 2007, doi: 10.1126/science.1143254.

X. Dai, J. Wu, J. Jiang, R. Gao, and U. K. Madawala, “An Energy Injection Method to Improve Power Transfer Capability of Bidirectional WPT System with Multiple Pickups,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5095–5107, 2021, doi: 10.1109/TPEL.2020.3032676.

M. E. Davison, “A Simple Proof that the Lorentz Force, Law Implied Faraday’s Law of Induction, when B is Time Independent,” Am. J. Phys., vol. 41, no. 5, pp. 713–713, May 1973, doi: 10.1119/1.1987339.

J. Feng, Q. Li, F. C. Lee, and M. Fu, “LCCL-LC Resonant Converter and Its Soft Switching Realization for Omnidirectional Wireless Power Transfer Systems,” IEEE Trans. Power Electron., vol. 36, no. 4, pp. 3828–3839, 2021, doi: 10.1109/TPEL.2020.3024757.

Downloads

Published

2022-05-31

How to Cite

sunardi, S., Raffli Bachtiar, R., Duta Septione, A., Ayu Larasati, N., Adi Perwira, D., Setio Pribadi, F. ., Nurtanto, M. ., Selvan Subramaniam, T. ., & Soedibyo. (2022). Autonomous Rail Rapid Transit (ART) Prototype Concept Using Wireless Charging System with Electromagnetic Induction Coupling. Journal of Railway Transportation and Technology, 1(1), 1–12. https://doi.org/10.37367/jrtt.v1i1.4

Issue

Section

Articles